Hyper Nuclear Simulations on Decay Pion Spectroscopy

Aruni Nadeeshani Hampton university Advisor- Dr. L . Tang

Nuclear Physics group meeting Hampton university

Out Line

- Introduction
- Purpose of the simulation
- Kinematic calculations
- Results

• Future plans

Introduction

- A hyper nucleus is a nucleus which contains at least one hyperon
- Hyperon- Baryon containing one or more strange quarks
- Lambda is the lightest hyperon.

Purpose of the simulation

• In previous experiments Detecting efficiency of the fragment is less .

The graph of detection efficiency Vs. Atomic number

Production of hyper nuclei

¹² C(e,e',K+)¹² _{^B}

Define kinematics

- Electron beam energy E=4.524 GeV
- virtual photon energy =0.7 -95%E GeV
- Scattered electron energy=3.826-0.226 GeV
- $\Theta_{e'} \ge 1.57$ rad will not considered.
- For small $\Theta_{e'}$, $\Theta_{\Upsilon k}$

$$\Theta_{e'k} = \Theta_{ek} = 0$$

Virtual flux factor

$$\tau = \frac{k\alpha}{4\pi^2 - q_{\mu}^2} * \frac{E}{E0} * \frac{2}{1 - \epsilon}$$

$$\epsilon = \frac{2E0^2 E^2 \sin^2 \theta'}{2 E0^2 E^2 \sin^2 \theta' - q^2 q_{\mu}^2}$$

q - Momentum of virtual photon q_{μ}^{2} - Invariant four momentum $q_{\mu}^{2} = k^{2} - q^{2}$

Graph of scattered electron energy

Ep

The graph of scattering electron angle

Generate Hyper nucleus mass

The quasi free mass distribution of ${}^{12}_{\Lambda}$ B in terms of binding energy N(B_{Λ})=3.742× B_{Λ} -0.04346× B_{Λ}²+1.793×10⁻⁴× B_{Λ}³

- $3.007 \times 10^{-7} \times B_{\Lambda}^{4} + 1.58 \times 10^{-10} \times B_{\Lambda}^{5}$

- Mass of Lambda particle=1.11563 GeV/C²
- Mass of ¹¹B core= 10.2526 GeV/C²
- Mass of ${}^{12}\Lambda B =$
- Mass of Lambda Particle+ Mass of ¹¹B core +binding energy

Graph of 12 A B mass distribution

mhyp

Graph of ¹² _AB momentum distribution

 Using the momentum conservation and energy conservation, the momentum of ¹² ^AB particle is,

3-Body decay

Then ${}^{12}{}_{\Lambda}B$ decay in to three particles. ${}^{12}{}_{\Lambda}B \rightarrow \alpha + \alpha + 4{}_{\Lambda}H$ Mass of ${}^{4}{}_{\Lambda}H = 3.922445 \text{ GeV/C}^2$ Mass of $\alpha = 3.727408 \text{ GeV/C}^2$

Graph of ⁴ _AH momentum distribution

3/22/2016

16

Graph of ⁴ _AH theta angle distribution

Graph of ⁴ _AH phi angle distribution

phih Number of counts 08 60 40 20 0 phi angle of Hydrogen 4 Lambda (Rad)

Future work

• Geant 4 simulation for ${}^{4}_{\Lambda}H$ ${}^{4}_{\Lambda}H \rightarrow \alpha + \pi$ -Mass of ${}^{4}_{\Lambda}H = 3.922445 \text{ GeV/C}^{2}$ Mass of $\alpha = 3.727408 \text{ GeV/C}^{2}$

Thank you